ЧЕ 18.5 .A34 no. DOT- TSC- NHTSA-	NO.DOT-TSC-NHTSA-80-30 DOT	-HS-
80-30	ROLLING RESISTANCE OF LIGHT TRUCK TIRES	

S.K. Clark

-805 665

University of Michigan Ann Arbor MI 48104

JANUARY 1981

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Office of Research and Development Washington DC 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

NOTICE

The views and conclusions contained in the document are those of the author(s) and should not be interpreted as necessarily representing the official policies or opinions, either expressed or implied, of the Department of Transportation.

			Technical Report	Documentatio								
1. Report No.	2. Government Acces	sion Na.	3. Recipient's Catalog	No.								
DOT-HS-805 665												
4./Title and Subtitle	5. Report Date											
ROLLING RESISTANCE OF	January 1981											
	6. Performing Orgonizot											
7. Author(s)	B. Performing Orgonizon DOT - TSC - NHT											
S.K. Clark	1	DOI-15C-NAI	SA-00-5									
9. Performing Organization Name and Addre	9. Performing Organization Name and Address											
University of Michigan	*		HS154/R1416									
Ann Arbor MI 48104			11. Contract or Grant N DOT - TSC - 1031									
12. Spansaring Agency Name and Address	12. Spansoring Agency Name and Address											
U.S. Department of Tran National Highway Traff	nsportation	minictmeti	Final Report Jan 1979 to	Dec 1979								
Office of Research and	linistration	1 14. Spansaring Agency										
Washington DC 20510	- opmone		- cpanading Agency									
15. Supplementary Notes U.S. Department of Transportation												
*Under Contract to: Research and Special Programs Administration Transportation Systems Center												
T	ransportatio:	n Systems Ce	enter									
Lio. Abstract	<u>ambridge MA</u>	02142										
The supplement con giving rolling resistan pressure. The plots re expense of taking measu equation is used which for loads and inflation	ntains carpet ice versus lo epresent meas irements at a predicts rol	t plots of 4 bad and reci sured data. all points o lling resist	procal of inf To avoid the on the plots, ance of the t	lation an ire								
The supplement con giving rolling resistan pressure. The plots re expense of taking measu equation is used which	ntains carpet ice versus lo epresent meas irements at a predicts rol	t plots of 4 bad and reci sured data. all points o lling resist	procal of inf To avoid the on the plots, ance of the t	lation an ire								
The supplement con giving rolling resistan pressure. The plots re expense of taking measu equation is used which	tains carpet the versus lo epresent meas rements at a predicts rol h values when	 I plots of 4 and recisured data. all points o lling resist re no measur 18. Distribution Stote DOCUMENT IS THROUGH THE 	ement AvaiLable to THE PU Service, SPRINGFIELD	lation an ire aken. BLIC								
The supplement con giving rolling resistan pressure. The plots re expense of taking measu equation is used which for loads and inflation	tains carpet the versus lo epresent meas rements at a predicts rol h values when	 18. Distribution Stored 10. Document IS 10. Document IS 11. Distribution Store 12. Document IS THROUGH THE INFORMATION VIRGINIA 2216 	ement AvaiLable to THE PU Service, SPRINGFIELD	lation an ire aken. BLIC								

Reproduction of completed page outhorized

PREFACE

This report is a supplement to a report issued in December 1979, entitled "The Rolling Resistance of Pneumatic Tires,"* written by S.K. Clark of the University of Michigan, under sponsorship of the Department of Transportation, Transportation Systems Center with Stephen Bobo acting as Technical Monitor. The report is available through the National Technical Information Service, Springfield VA 22151.

*Report Number DOT-TSC-NHTSA-79-28/DOT-HS-804 523, December 1979.

	Ser abol	11	z \$ Ē	£ £ i	5 £	2 = = = \$2 ⁻ 2	÷ . #
e Mesuros	Ta find	in ches In ches	feet yards miles	equare factors square yards square mites acres	enuces Pounds	tield sunces prins quarts gallons cubic yards cubic yards	Felvenheit Langesehure 1.00 200 6.0 1 0 1.00 200 6.0 200 000 000 000 000 000 000 000 000 0
rsions from Motel	Maltiply by LENGTH	0.04 0.4	3.3 1.1 0.6 AREA		0.035 2.2 1.3 VOLUME	0.03 2.1 1.06 0.26 35 1.3 1.3 TEMPERATURE (exect)	9/6 (Menn edd 32) edd 32) 10 1
Appraximate Canversions from Motels Massuros	When Yos Know	multimaters centimaters	mutors motors hitomators	equare centimeters square interes square hittmeters hectarss (10,000 m ²)	grema Artogreme transes (1000 Ag)	millilitars liters liters cubic maters cubic maters	Calativa terrparativa * * * * * * * * * * *
	Symbol	E 5	E E .	`E~∈ Ĩ 2	• 2 -	ē e e	
33		OZ 61	10 12 18				
)* . .						·	
	Symbol		5 5 6 5	B 777 B 2	8 d 0	īīīîî	v .
Mesures	Te find		Continuators Continuetors maters kilomators	square continuetors pquere maters square maters bquare hitomaters hactares	grams A riograms Lonne s	milliliters milliliters milliliters hiters titers titers cubic meters cubic meters	Celsius • temparature • temparature •
Appraximete Conversions to Matrix Measures	Mahiphy by	LENGTH	-25 30 0.9 1.6 Afila	e.s e.os o.e 2.e 0.4 MASS (weight)	2° 0.45 VOLUME	8 8 9 9 9 9 9 9 9 8 9 9 9 9 9 9 9	TEMPERATURE (exect) 8/9 Latter we subtracting 32) 12,25,50 Latoling No. C 11 U 25
Appreximete Cen	Whas Yee Kaow	-	inches feet yeds miles	equera Inches Reuner Feet Reuner yards Reuner miles Recres	ounces pounds short tons (2000 h)	tesspoons tablespoons fluid ounces cups punts guerts guerts guerts cubic yards	TEMPERATURE (exoct) Fahrenhait 5/9 laher Celsius Iomperature subtracting temperature 1 1 2.54 lineacting temperatures
	Symbol	•	.E # 9 .E	* * * * 	5 £	ده 11 مر 1 مر 1 مر 1 مر 1 مر	*e -1 -n -1 - 2,54.1 Units of Weigh

METRIC CONVERSION FACTORS

iv

TABLE OF CONTENTS

Section		Page
1.	INTRODUCTION	1
2.	LIGHT TRUCK TIRE ROLLING RESISTANCE	3

LIST OF ILLUSTRATIONS

Figure		Page
1.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 7.50-16LT LR D	10
2.	Equlibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Michelin 9.50-R16. 5LT LR D	11
3.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 7.50-16 LT LR D	12
4.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Dunlop 9.50-R16.5 LT LRD	13
5.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 8.00-16.5 LT LRD	14
6.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 8.00-16.5 LT LRD	15
7.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 5.75-16.5 LT LR E	16
8.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 8.75-16.5 LT LR E	17
9.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 9.50-16.5 LT LR D	18
10.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 9.50-16.5 LT LF E	19

.

.

Page

-

Figure

11.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 9.5-16.5 LT LR E	20
12.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Dunlop 10-15 LT LRB	21
13.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 10-15 LT LRB	22
14.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 8.75R 16.5 LT LR E	23
15.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 8.75-16.5 LT LRE	24
16.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 8.00 R16.5 LT LRE	25
17.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Michelin 8.00 R16.5 LT LR D	26
18.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Firestone 7.50-16LT LR E	27
19.	Equilibrium Rolling Resistance (Flat Surface) Vs. Load and Inflation Pressure: Goodyear 7.50-16 LT LR E	28
20.	Rolling Resistance Efficiency Vs. Inflation Pressure	29/30

LIST OF TABLES

Table		Page
1.	TIRE IDENTIFICATION AND TEST DATA LIGHT TRUCK TIRES	4
2.	TIRES SELECTED FOR MULTIPLE TEST POINT STUDIES	7
3.	TIRE TEST COMPARISONS BETWEEN MEASURED AND PREDICTED ROLLING RESISTANCE	7

1. INTRODUCTION

This report represents an addendum to a previous report issued by the University of Michigan entitled, "The Rolling Resistance of Pneumatic Tires," completed under sponsorship of the Department of Transportation, Transportation Systems Center, Cambridge MA.

In that earlier report, it was shown that the rolling resistance of a pneumatic tire was sensitive to load, inflation pressure, construction details, and size. Data representative of the U.S. national population of passenger car tires were presented, and some of the issues concerning measurement of this complex phenomenon were discussed.

The data presented in the previous report were obtained on the basis of capped air tests, that is, tests in which the tire was inflated to its recommended cold inflation pressure and then run until temperature and pressure equilibration were reached under the particular test conditions in question. This is considered a better test than one in which the pressure is regulated at some predetermined value, since it allows the tire pressure to build up in a fashion similar to what would occur in service.

Further reason for the use of capped air tests is that the data obtained from them are well represented by simple analytical relationships for conditions other than those measured by the tests, so that prediction for off-design rolling resistance values can be made with reasonable accuracy. The useful form of predictive equation developed in the earlier report is given as equation (1) below, where F_r , is the tire rolling resistance at the load F_z , with inflation pressure p, while F_{r_0} , F_{z_0} and p_0 are rolling resistance, load, and inflation pressure, respectively, at some baseline or standard conditions chosen by the experimenters. The constant c_p is the pressure sensitivity of the tire, which must be determined by at least two tests. The constant c_p is characteristic for each tire, and methods for determining it were discussed in

the earlier report.

$$F_{r} = F_{r_{o}} \left(\frac{F_{z}}{F_{z_{o}}} \right) \left[1 + c_{p} \left(\frac{p_{o}}{p} - 1 \right) \right]$$
(1)

All measurements were made on a 67-in. diameter indoor test drum, which has become the industry standard for such measurements. A method is presented for converting such values to flat roadway conditions.

2. LIGHT TRUCK TIRE ROLLING RESISTANCE

In the earlier report, light truck tires were not included in the study. Since then, an increasing number of vehicles using light truck tires have appeared on the American market so that their characteristics have become important in assessing national fuel conservation goals.

For the present study, a group of 19 light truck tires was selected based on the following considerations:

- (a) Frequency of occurrence of that size in current original equipment production;
- (b) Market share of a particular type of construction, i.e., radial vs. bias;
- (c) Manufacturer's probable market share.

The tires selected are given in Table 1.

One further complication associated with this type of testing is the fact that for purposes of precision, convenience, and cost it is necessary to conduct these experiments on an indoor test wheel rather than on the highway. This introduces the error of the curved surface upon which the tire runs. Our approach has been to measure the rolling resistance of the tire at its proper load and inflation pressure on the 67-in. drum and then to convert this value of curved surface rolling resistance to a comparable value on the highway using equation (4-29) of the earlier report. Therefore, the data measured on the 67-in. drum was converted to a flat surface equivalent by dividing each of the measured rolling resistance values by the quantity:

$$(1+\frac{r}{R})^{1/2}$$
 (2)

where r = tire radius and R = drum radius. This conversion, while approximate, has been subsequently substantiated by a considerable amount of test data and has been accepted, at least for

TIRE IDENTIFICATION AND TEST DATA LIGHT TRUCK TIRES TABLE 1.

Coeff. ³	01	Rolling Recict	1b/1000 1b.	6600.	.0117	.0105	1600.	.0068	.0075	.0075	.0066	.0093	.0114	.0082	.0084	.0092	.0107	.0090	.0102	.0086	.010	.0080	0600.	.0086	.0107			.0088	.0095	.0079	.0086	, UIZY
Equivalent ^Z Fnuil	Rolling	Resistance on Highway	lb 1b	1.61	22.6	15.3	23.7	14.9	16.5	12.6	18.4	17.9.	22.0	18.9	18.5	14.8	17.2	14.5	16.5	19.2	22.7	17.9	20.1	18.9	23.5		•	23.4	25.1	21.0	8,25	18.0
Meas	Equil.	Rolling	16	23.2	27.5	18.6	28.8	17.9	19.8	15.2	22.1	21.8	26.8	21.8	22.3	7.71	20.5	17.3	19.6	23.0	27.3	21.4	24.1	22.9	28.4			28.2	30.4	25.4	27.5	21.6
	Radial	16		1930	1930	1460	2440	2190	2190	1670	2780	1930	1930	2190	2190	1610	1610	1610	1610	2240	2240	2240	2240	2190	2190	2190	2190	2650	2650	2650	2650	1390
Four\$1	Infla.	Press.	וכק	68.1	51.7	58.9	75.5	9.17	52.7	63.1	76.1	69.4	50.9	75.2	55.9	71.5	52.2	67.4	50.2	86.0	72.2	82.8	66.2	68.8	52.4		1	84.7	72.1	85.4	69.0	36.1
Cold	Inflation	Press.	l ch	60	40	50	60	65	45	55	65	60	40	65	45	60	40	60	40	75	55	75	55	60	40	60	40	75	55	75	55	30
	Serial	Number		VAWYCMM309	VAWYCMM309	VAWYCMM309	VAWYCMM309	ZUE869191	ZUE869191	ZUE869191	ZUE869191	MDWYCM0489	MDWYCM0489	DAXL8A7158	DAXL8A7158	VJXJDPM349	VJXJCPM349	MEXJDP0509	MEXJDP0509	VDXKDUN399	VDXKDUN399	MEXKDU1379	MEXKDU1379	VJXLDPM268	VJXLDPH268			VJXLDUM409	VJKXDUM409	MFXLDU1159	MFXLDU1159	DAAN457398
	Manifacturer			Firestone	Firestone	Fires tone	Firestone	Michelin	Michelin	Michelin	Michelin	Goodyear	Goodyear	Dunlop	Dunlop	Firestone	Firestone	Goodyear	Goodyear	Firestone	Firestone	Goodyear	Goodyear	Firestone	Firestone			Firestone	Firestone	Goodyear	Goodyear	Dunlop
	Construction			6N	6N	6N	6N	1s+4s	1s+4s	1s+4s	1s+4 s	•		2p+(2s+2N)	2p+(2s+2N)	6N	6N	4N+2N	4N+2N	6N	6N	4N+2N	4N+2N	6N	6N			6N	6N	4N+2N	4N+2N	4p
	Tire Deceiption	(All LT lires)		7.50-160	7.50-160	7.50-160	7.50-16E	9.50R16.50	9.50R16.5D	9.50R16.5D	9.50R16.5D	7.50-16C	7.50-160	9.50R16.5D	9.50R16.5D	8.00-16.50	8.00-16.50	8.00-16.50	8.00-16.50	8.75-16.5E	8.75-16.5E	8.75-16.5E	8.75-16.5E	9.50-16.50	9.50-16.50	9.50-16.50	9.50-16.50	9.50-16.5E	9.50-16.5E	9.50-16.5E	9.50-16.5E	10-158
	Tire	UALT			_	_	_	11	=	Ξ	Ξ	25	25	28	28	5	5	23	23	4	4	19	19	m	m	26	26	9	9	22	22	0
	Test	Number		F	2	5	4	ß	9	7	80	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

N = NYLON P = POLYESTER R = RADIAL S = STEEL

٠
F
5
5
\simeq
9
\sim
S
ĒTĪ -
$\overline{}$
F -1
5
5
\simeq
<u> </u>
Ľ

LIGHT TRUCK TIRES
ingen (
0
-
~
4
E -1
\triangleleft
0
-
F .
-
S
ш
_
L .
~
2
P.
AN
V AND TEST DATA
N AN
ON AN
ION AN
TION AN
ATION AN
CATION AN
CATION AN
ICATION AN
FICATION AN
IFICATION AN
TIFICATION AN
VTIFICATION AN
INTIFICATION AN
ENTIFICATION AN
DENTIFICATION AN
IDENTIFICATION AN
I DENTIFICATION AN
EIDENTIFICATION AN
RE IDENTIFICATION AN
RE IDENTIFICATION AN
IRE IDENTIFICATION AN
TIRE IDENTIFICATION AN
TIRE IDENTIFICATION AN
TIRE IDENTIFICATION AN
TIRE IDENTIFICATION AN
. TIRE IDENTIFICATION AN
1. TIRE IDENTIFICATION AN
1. TIRE IDENTIFICATION AN
E 1. TIRE IDENTIFICATION AN
LE 1. TIRE IDENTIFICATION AN
SLE 1. TIRE IDENTIFICATION AN
BLE 1. TIRE IDENTIFICATION AN
ABLE 1. TIRE IDENTIFICATION AN
TABLE 1. TIRE IDENTIFICATION AN
FICATION

Coeff. ³ of Rolling Resist. 1b/1000 lb.	.0148 .0120	.0148	.0080	.0085	.0034	0600.	.0077	.0084	.0075	.0080	.0097	.0105	0600.	.0103	
Equivalent2 Equil. Rolling Resistance on Highway lb	20.6 16.7	20.7	18.C	19.0	18.5	20.2	15.0	16.3 .	12.0	12.9	22.5	24.3	20.7	23.9	
Meas. ¹ Equil. Rolling Resis. 1b		25.0	21.6	22.9	22.7	24.3	18.0	19.5	14.3	15.4	27.3	29.3	25.2	29.1	
Radial Load 1b	1390 1390	1390	2240	2240	2240	2240	1945	1945	1610	1610	2310	2310	2310	2310	
Equil. Infla. Press. psi	27.2 34.7	24.7	89.3	69.9	91.4	76.2	87.7	70.0	71.9	50.4	85.8	68.4	89.3	70.1	
Cold Inflation Press. psi	20 30	20	80	60	30	60	80	60	65	45	75	55	75	55	
Serial Number	DAAN457398 MLANL9N348	MLANL9N348	V JXKBDC 059	VJXK8DC059			MMXJW30398	MPX JM 3 03 98	XVI436191	XV1486191	VAWYCPM159	VAWYCPH159	MDNYCP0439	MDWYCP0439	
Manufacturer	Dunlop Goodyear	Goodyear	Firestone	Firestone			Goodyear	Goodyear	Michelin	Michelin	Firestone	Firestone	Goodyear	Goodyear	ter
Construction	4p 4p	4p	3p+2s	3p+2s			2p+2s	2p+2s	1 s+4 s	1 s + 4 s	6N	6N	4N+2N	4N+2N	p = Polyeste
Tire Description (All LT Tires)	10-158 10-158	10-158	8.75R16.5E	8.75R16.5E	8.75R16.5E	8.75R16.5E	8.00R16.5E	8.00R16.5E	8.00R16.5D	8.00R16.50	7.50-16E	7.50-16E	7.50-16E	7.50-16E	
Tire Number UMLT	10	20	7	7	27	27	21	21	29	29	~	0	24	24	
Test Number	30	32	33	34	35	36	37	38	39	40	41	42	43	44	

¹ Measured on a 67.23" drum by torque cell method at 50 mph.	² Obtained by dividing the rolling resistance measured on the 67 ⁿ drum by	(1+r/R) ^{1/2}
N = NYLON P = POLYESTER	R = RADIAL S = STEEL	

where r = tire radius, R = drum radius.

³Defined as flat surface rolling resistance divided by load carried.

passenger car tires, as a reasonable approximation. All measurements were made under fully equilibrated conditions at 50 mph surface speed.

The thrust of the present addendum is to obtain data on a variety of present-day light truck tires and to present this data in such a way that fuel economy studies may be carried out with realistic tire rolling resistance input information. Because of limited resources, it was decided to utilize the previous analytical framework represented by equation (1) in order to reduce the cost of the test program substantially. This was done in a twopart sequence, consisting of the following:

- 1) Two tires were tested at several combinations of load and pressure in order to validate the concept of equation (1), again using capped air tests for all test points. Two of the test points in each sequence were used to obtain c_p , the pressure coefficient. The predictions from equation (1) were compared with measured points.
- 2) The remaining tires of the test program were tested under a two-point test program designed to determine the pressure coefficient and to give baseline values so that equation (1) could be evaluated at a variety of other load and pressure conditions. This is even more necessary in light truck tires than passenger car tires, since light truck tires tend to be operated under a wider variety of load and pressure conditions than passenger car tires.

The test data are presented in two groups. In the first group, the data from the two test tires selected for multiple test point studies are given. These tires are described in Table 2.

The comparisons between measured and predicted rolling resistance are given in Table 3. These were made at combinations of load and pressure, different from those used to obtain the pressure coefficients in Table 2.

TABLE 2. TIRES SELECTED FOR MULTIPLE TEST POINT STUDIES

TEST TIRE	7.50-16LT	9.50R16.5LT
LOAD RANGE	D	D
MFGR	FIRESTONE	MICHELIN
S/N	VAWYCMM309	ZUE869191
BASE LINE CONDITIONS LOAD LBS PRESSURE PSI	1930 60	2190 65
MEASURED F *	23.21	17.9
MEASURED cp		
USING TWO TEST POINTS	0.370	0.239

TABLE 3. TIRE TEST COMPARISONS BETWEEN MEASURED AND PREDICTED ROLLING RESISTANCE

TEST TIRE	7.50-16LT LR D	FIRESTONE VAWYCMM309
LOAD	1460	2440
PRESSURE	50	60
PREDICTED F _r **(Eq. 1)	18.85	29.34
MEASURED Fr**	18.57	28.75
TEST TIRE	9.50R-16.5LT LR D	MICHELIN ZUE869191
LOAD	1670	2780
PRESSURE	55	65
PREDICTED F _r **(Eq. 1)	14.24	22.72
MEASURED Fr**	15.20	22.10

Measured on 67-in. drum but reduced to flat surface by use of equation (2).
**Expressed as flat surface values by converting from 67-in. drum data using equation (2).

These test points are shown in Figures 1 and 2, along with the linear maps predicted by use of equation (1).

Tables 1 and 2 demonstrate good agreement of predictions using equation (1) with test data. Based on this, the remainder of the test program was carried out by measuring two rolling resistance values for each tire, both at a load of 80 percent of the maximum recommended Tire and Rim Association load, but at two different inflation pressures. From these measurements, the pressure coefficient c_p , used in equation (1), was found along with the baseline values of load, inflation pressure, and rolling resistance denoted respectively by F_{z_0} , p_0 , and F_{r_0} , which are also used in equation (1).

Having these values available for each tire, equation (1) was used to prepare maps of tire rolling resistance as a function of various loads and reciprocal pressures. These are presented in Figures 3 through 19. In these figures the small circles represent the actual test data, reduced to flat road conditions by use of equation (2), while the lines represent predictions from equation (1).

Because of the general tendency of rolling resistance data to be linear with load and to be linear with the reciprocal of inflation pressure, those variables were chosen for plotting the data. The subsequent maps presented show the rolling resistance in terms of load and in terms of the reciprocal of inflation pressure, although both scales are given on the abscissa of inflation pressure. Because of the linear nature of the data, it now becomes quite easy to interpolate between load and pressure points.

It is not possible to find a simple means to compare the various tires tested since they are designed for different loads, different inflation pressures, and even different service. Nevertheless, one interesting generalization can be obtained by plotting the load carrying efficiency of the tire, defined at some baseline condition, against its inflation pressure. These variables are chosen because it is generally conceded that in the low to medium pressure range the tire rolling resistance decreases, so

that load carrying efficiency should increase. The efficiency of load carrying is arbitrarily defined as

$$\left(\frac{F_z}{F_r}\right) = Efficiency$$

where the load F_z is that at which the rolling resistance F_r is measured. It was chosen to plot this against inflation pressure, but in order to retain the dimensionless character of the plot, the ratio of inflation pressure to atmospheric pressure is used. Data for the tires studied are given in this form in Figure 20.

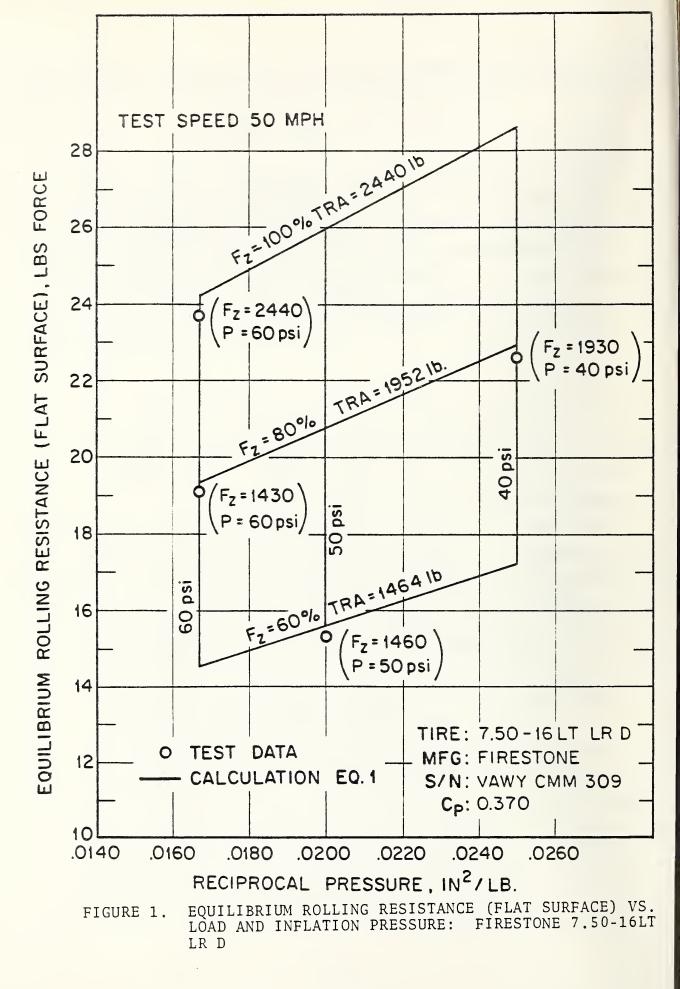
Note that rearrangement of equation (1) results in a tire load carrying efficiency which varies with pressure according to the relationship

Efficiency = (Efficiency)_{BASE} x
$$\frac{(1+\frac{\Delta p}{p_0})}{[1+(1-c_p)\frac{\Delta p}{p_0}]}$$

where Δp is the departure from p_0 , i.e., $p = p_0 + \Delta p$. This is a near-linear relationship for relatively modest values of $\Delta p/p_0$.

Figure 20 displays the rolling resistance data in such a way that two conclusions are available:

- For both bias and radial tires, there is a strong correlation between tire efficiency and inflation pressure.
- (2) Not all tires fall in a narrow band. Some are markedly more efficient than others at the same pressure. This strongly implies that design influences can be substantial.



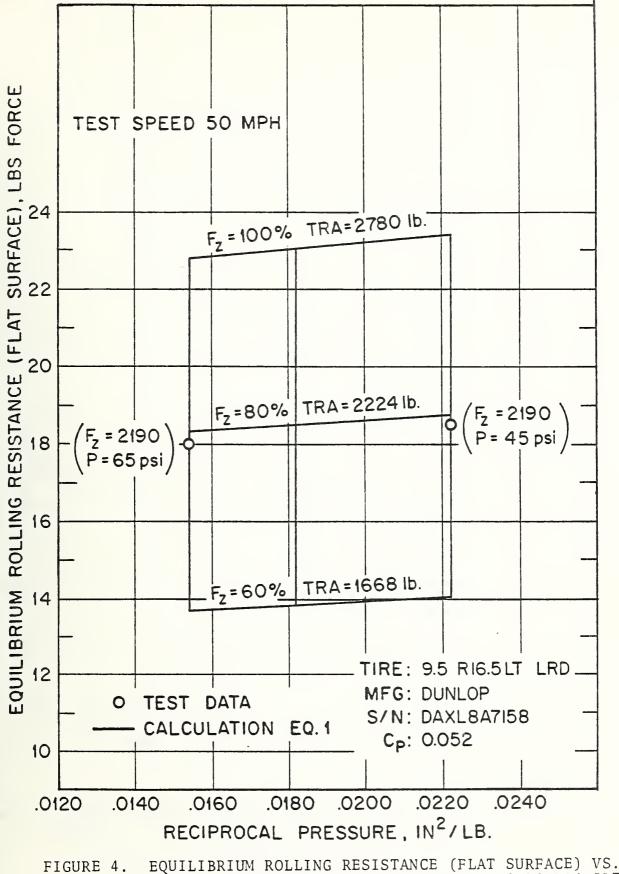


FIGURE 2. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: MICHELIN 9.50-R16.5 LT LR D

LOAD AND INFLATION PRESSURE: DUNLOP 9.50-R16.5LT LRD

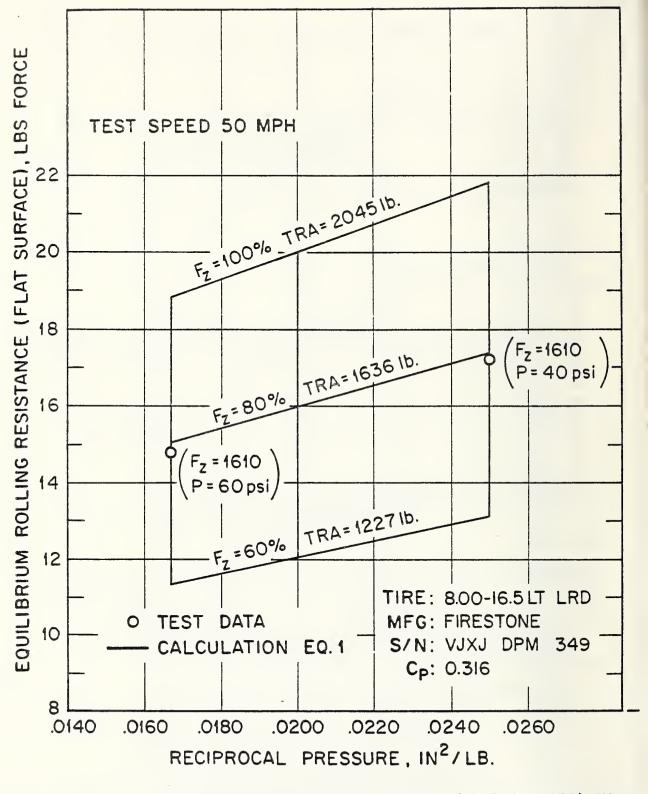
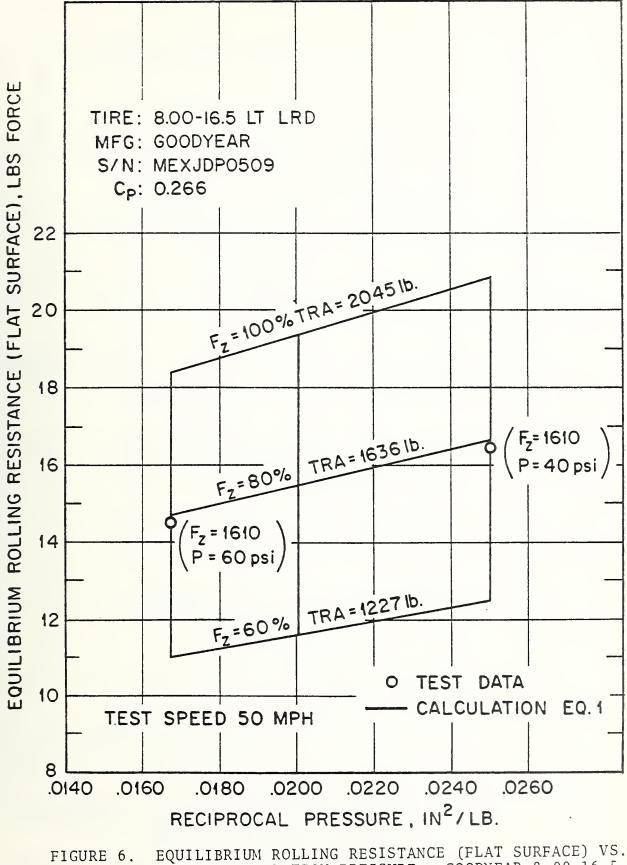



FIGURE 5. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: FIRESTONE 8.00-16.5LT LRD

LOAD AND INFLATION PRESSURE: GOODYEAR 8.00-16.5 LT LRD

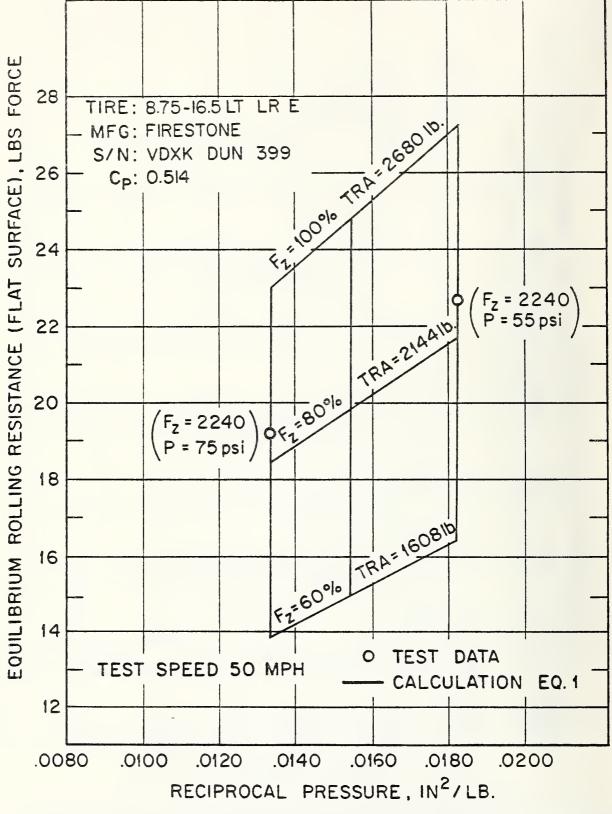
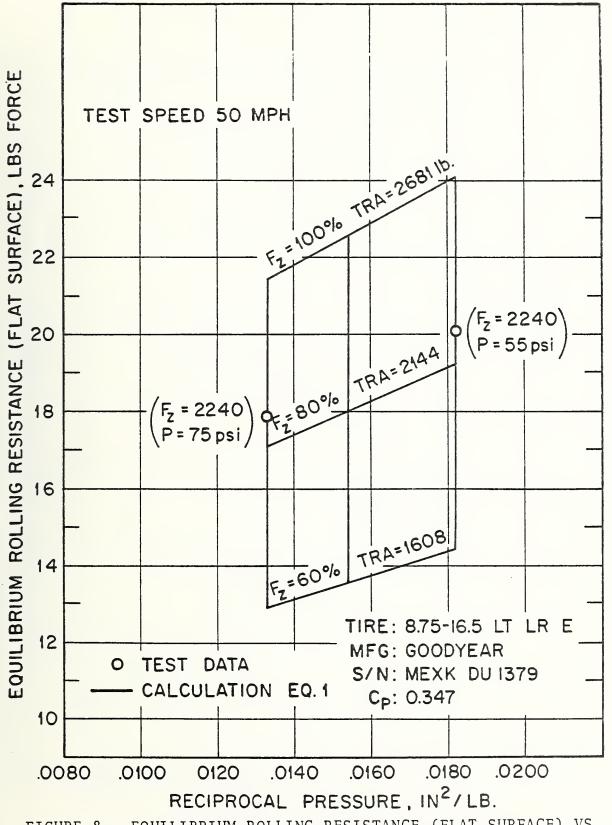
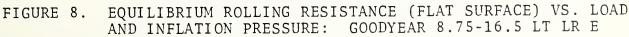




FIGURE 7. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: FIRESTONE 5.75-16.5 LT LR E

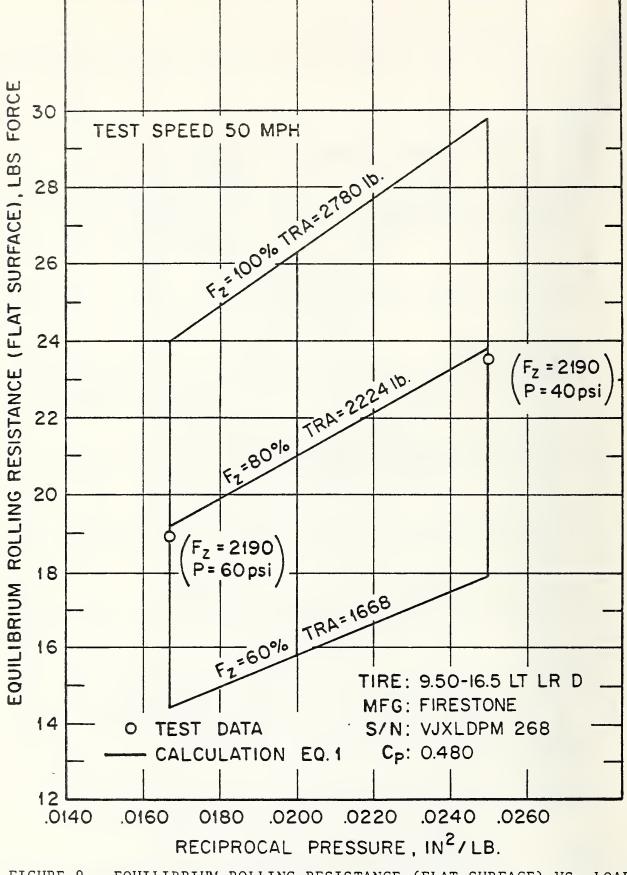
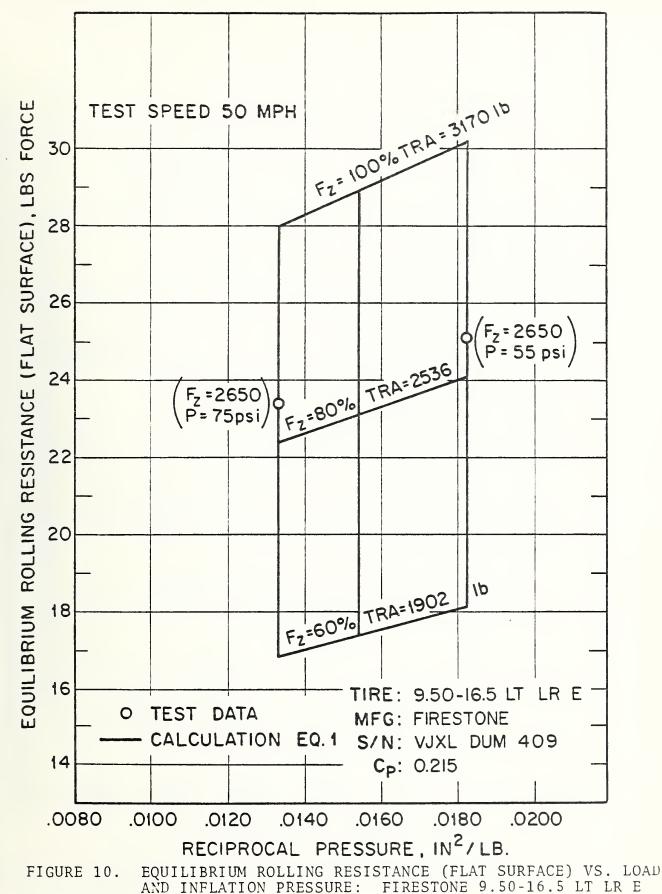
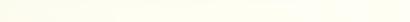




FIGURE 9. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: FIRESTONE 9.50-16.5 LT LR D

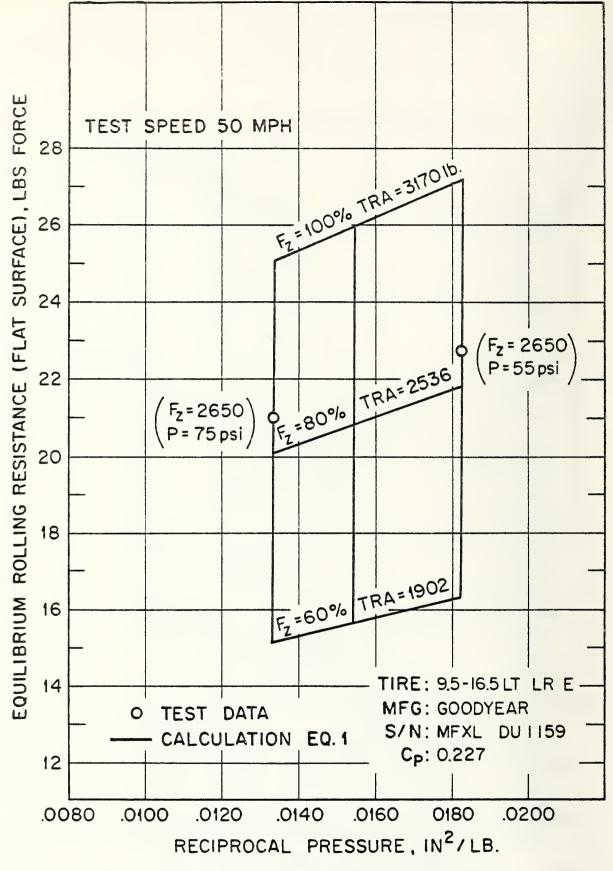


FIGURE 11. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: GOODYEAR 9.5-16.5LT LR E

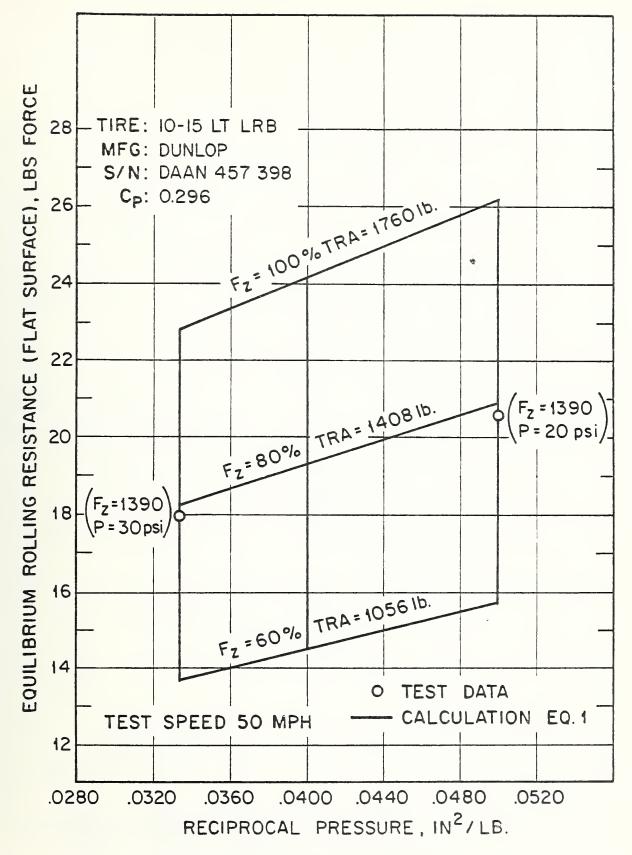
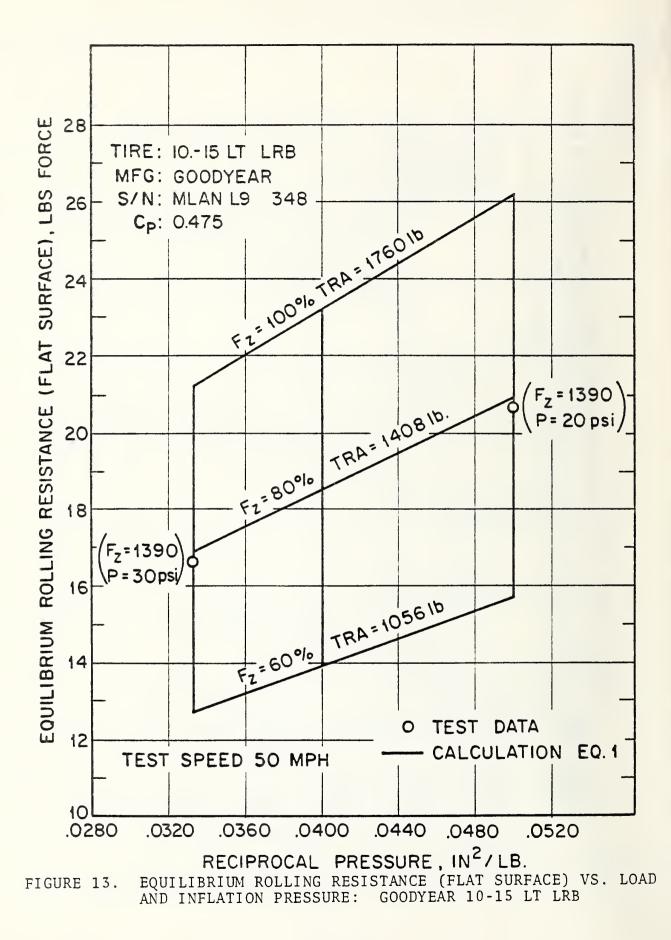
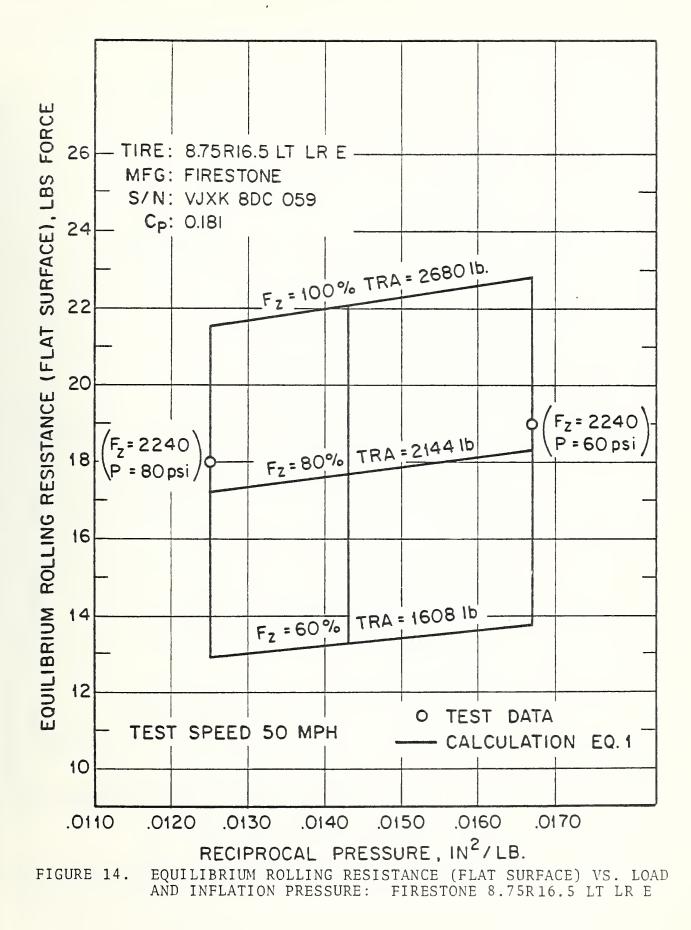




FIGURE 12. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: DUNLOP 10-15 LT LRB

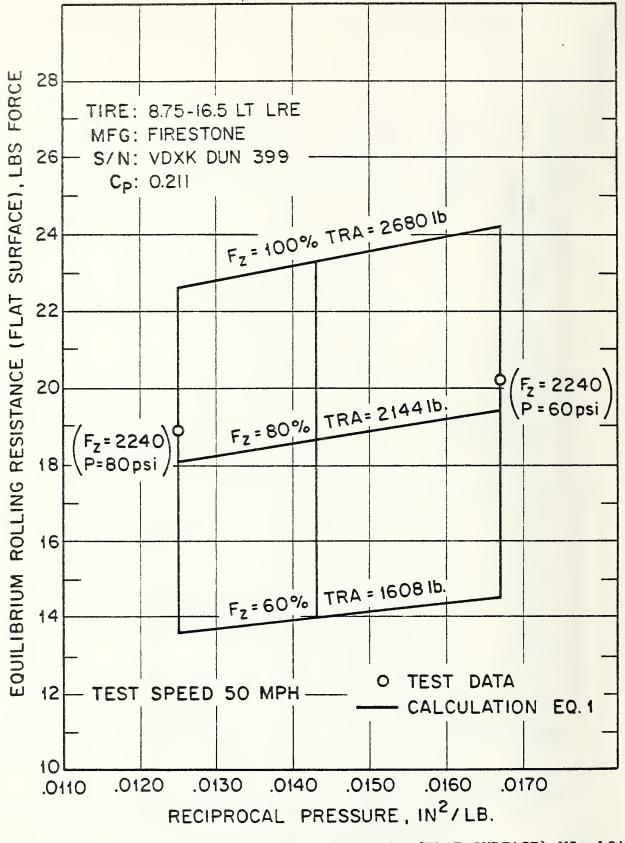


FIGURE 15. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: FIRESTONE 8.75-16.5 LT LRE

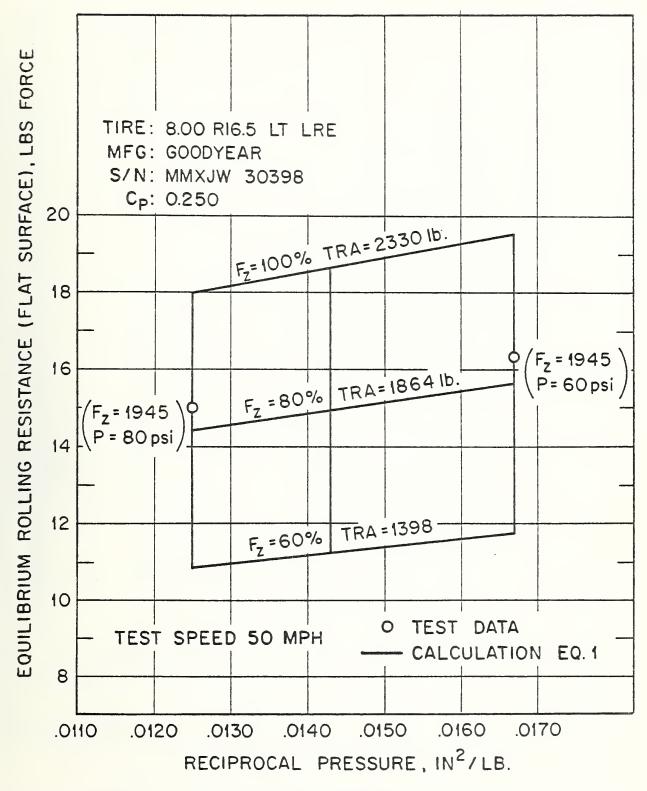


FIGURE 16. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: GOODYEAR 8.00 R16.5 LT LRE

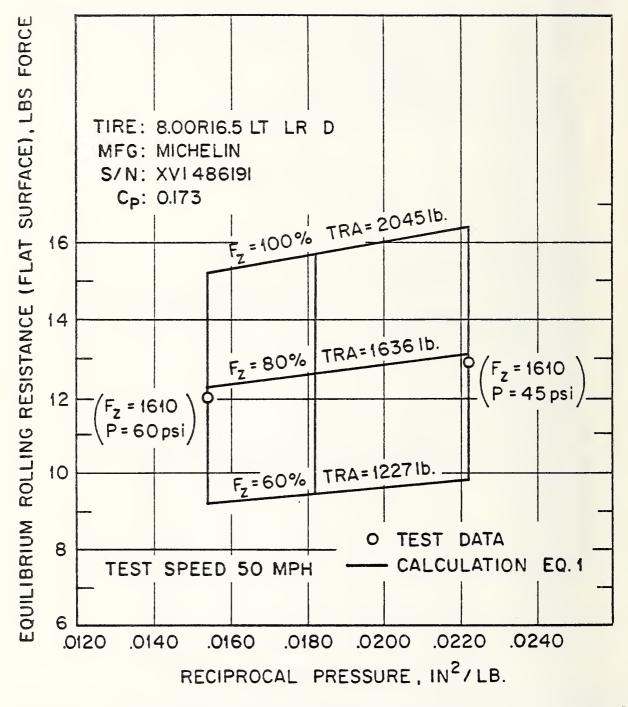


FIGURE 17. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE VS. LOAD AND INFLATION PRESSURE: MICHELIN 8.00 R16.5 LT LR D

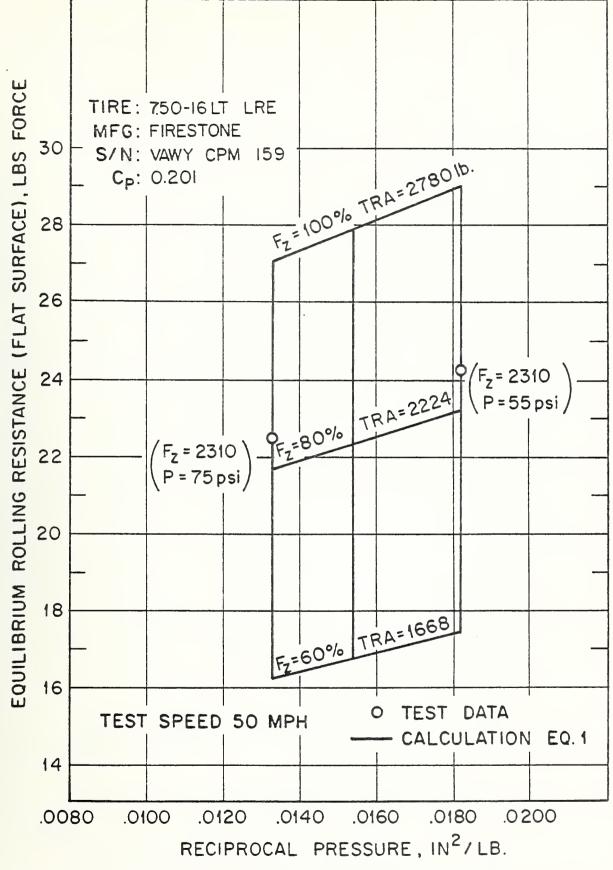


FIGURE 18. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: FIRESTONE 7.50-16LT LR E

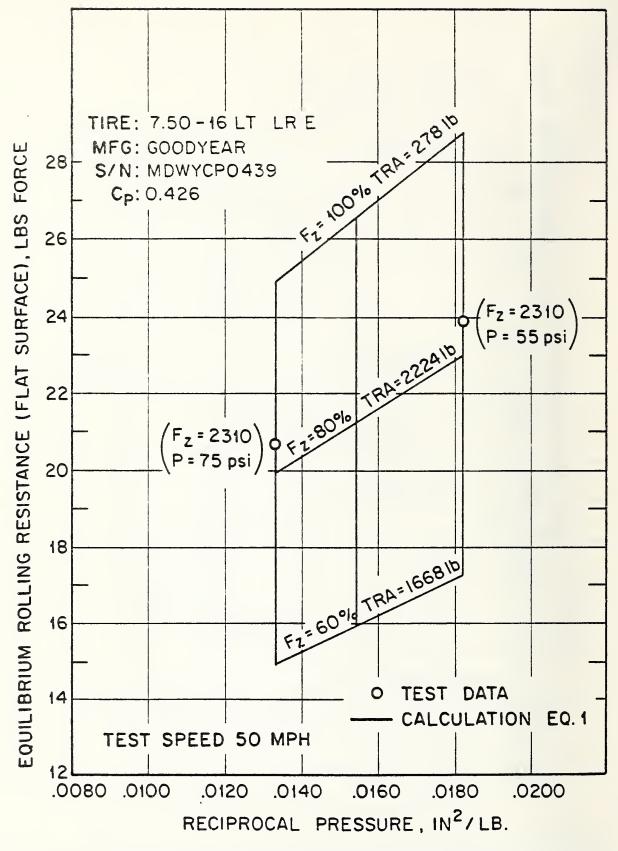


FIGURE 19. EQUILIBRIUM ROLLING RESISTANCE (FLAT SURFACE) VS. LOAD AND INFLATION PRESSURE: GOODYEAR 7.50-16 LT LR E

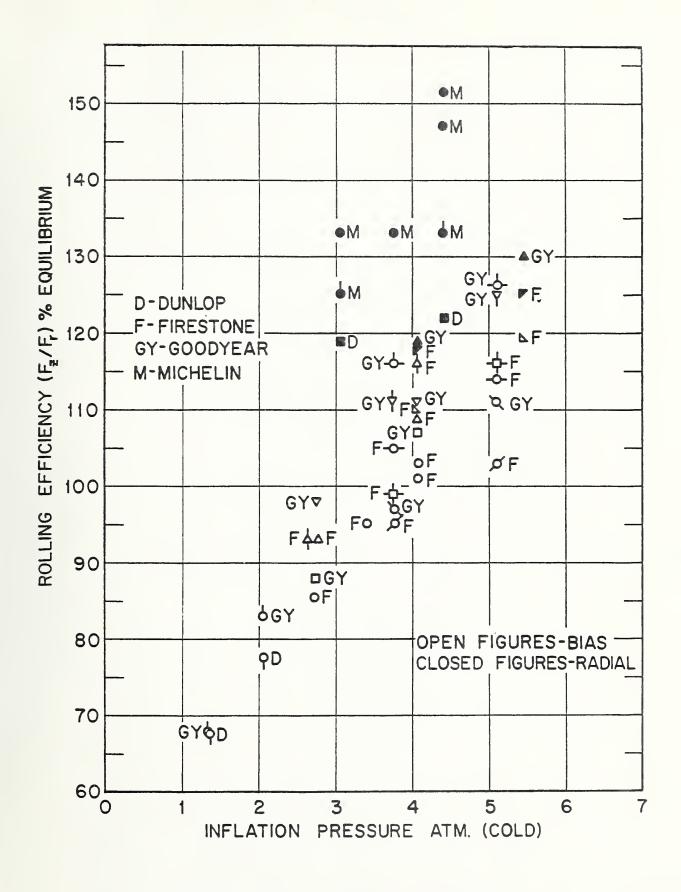
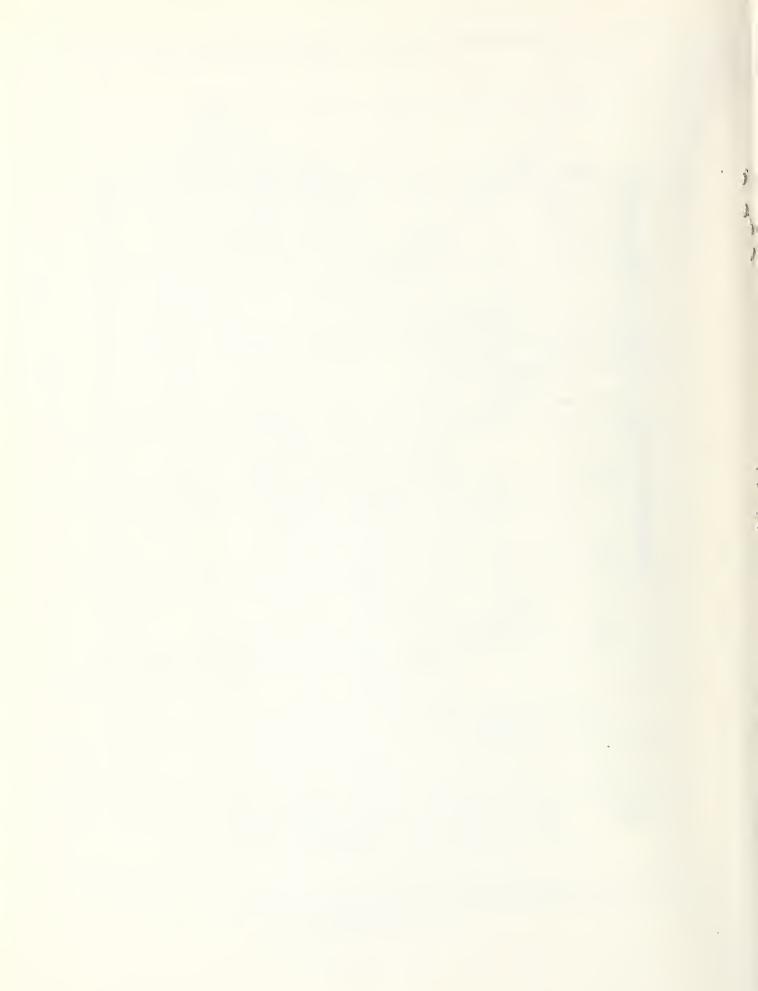
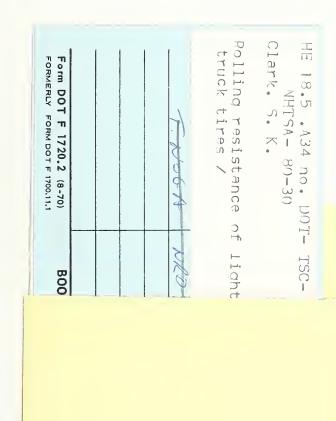
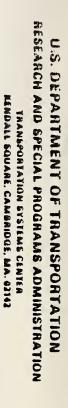





FIGURE 20. ROLLING RESISTANCE EFFICIENCY VS. INFLATION PRESSURE

PUSTAGE AND FEES FAID U.S. DEPARTMENT OF TRANSPORTATION 613

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, (300

•

